Microwave-Assisted Synthesis of Pd Nanoparticles and Catalysis Application for Suzuki Coupling Reactions

نویسندگان

  • Jian Zhang
  • Xuefeng Bai
چکیده

A facile and efficient method was developed for the synthesis of highly active palladium nanoparticles (PdNPs) by microwave-assisted chemical reduction. The PdNPs with different morphology were prepared with or without KBr (capping agent) using ethylene glycol (EG) and citric acid (CA) as reducing agent in the presence of polyvinylpyrrolidone (PVP), respectively. The as-prepared PdNPs were characterized by (UV-Visible Spectrophotometer) UV-Vis, transmission electron microscopy (TEM) and Xray diffraction (XRD) analysis. The results showed that the PdNPs reduced by EG without KBr (PdNPs-EG) has smaller particle size than other PdNPs. The remarkable catalytic activity of the PdNPs catalysts are obtained using a low amount of PdNPs (0.1 mmol‰) using K2CO3 as base and EtOH/H2O as solvent toward Suzuki coupling reactions of aryl bromides and phenylboronic acid for 15 min.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Palladium Loaded on Magnetic Nanoparticles as Efficient and Recyclable Catalyst for the Suzuki- Miyaura Reaction

Palladium is the best metal catalyst for Suzuki cross coupling reaction for synthesize of unsymmetrical biaryl compounds. But its high cost limits its application in wide scale. Using of nanoscale particles as active catalytic cites is a good approach for reducing needed noble metal. By loading precious nanoparticles on magnetic nanocores as a support, recycling and reusing of catalyst will be ...

متن کامل

Synthesis of novel tridentate ligand-based palladium catalyst and investigation of its reactivity towards Suzuki, Sonogashira and Heck coupling reactions

We have demonstrated a simple and efficient route for the synthesis of a novel imine based tridentate ligand and its Pd-complex to investigate the C-C cross-coupling reactions, that involve column chromatography purification in only one step. The catalytic activity of the newly synthesized catalyst was studied for the Suzuki, Sonogashira and, Heck cross-coupling reactions under mild conditions....

متن کامل

Palladium nanoparticles immobilized on multifunctional ‎hyperbranched polyglycerol-grafted magnetic nanoparticles as a ‎sustainable and efficient catalyst for C-C coupling reactions

This study offers an exclusive class of magnetic nanoparticles supported hyperbranched polyglycerol (MNP/HPG) that was functionalized with citric acid (MNP/HPG-CA) as a host immobilization of palladium nanoparticles. The MNP/HPG-CA/Pd catalyst was fully characterized using some different techniques such as thermogravimetric analysis (TGA), x-ray diffraction (XRD), transmission electron microsco...

متن کامل

Suzuki-Miyaura cross-coupling reaction catalyzed using highly efficient CN-dimeric ortho-palladated complex under microwave irradiation and conventional heating

Suzuki cross-coupling reaction of different aryl halides with arylboronic acids was successfully carried out in methanol using ortho-palladated complex of 2-methoxyphenethylamine. All substrates afforded the corresponding products in good to high yields in the presence of low amounts of this complex as efficient and active catalyst. Application of microwave irradiation improved the yields of th...

متن کامل

Suzuki-Miyaura cross-coupling reaction catalyzed using highly efficient CN-dimeric ortho-palladated complex under microwave irradiation and conventional heating

Suzuki cross-coupling reaction of different aryl halides with arylboronic acids was successfully carried out in methanol using ortho-palladated complex of 2-methoxyphenethylamine. All substrates afforded the corresponding products in good to high yields in the presence of low amounts of this complex as efficient and active catalyst. Application of microwave irradiation improved the yields of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017